LIFE CYCLE ANALYSIS AND ENVIRONMENTAL IMPACT

ChE 4273

Prof. Miguel Bagajewicz

LIFE CYCLE ANALYSIS

The inventory corresponding to all the activities associated with a particular product is calculated.

- -Raw Materials used.
- -Energy requirements of ALL steps
- -Emmisions/Effluents produced in ALL steps
- -Waste of ALL steps and the whereabouts of these waste.

-STEPS considered are:

Raw Material Acquisition

Manufacturing

Transportation

Recycle/Reuse

Wastes/Final disposal of used product

LIFE CYCLE ANALYSIS

INVENTORIES

EXAMPLE: ETHYLENE

Raw Materials: Oil/Gas

Energy needed: Coal/Oil/Electricity

Products: Polyethylene (mostly)

Wastes: From production of Ethylene and Polyethylene

Final Product Disposal: Landfills, Atmosphere

INVENTORIES

Life-Cycle Inventory Data for the Production of 1 kg of Ethylene (Boustead, 1993).

Category	Input or Output	Unit Average			
Energy content	Coal	0.94			
fuels, MJ	Oil	1.8			
	Gas	6.1			
	Hydroelectric	0.12			
	Nuclear	0.32			
	Other	< 0.01			
	Total	9.2			
Feedstock, MJ	Coal	<0.01			
	Oil	31			
	Gas	29			
	Total	60			
		•			
Total Fuel + Feedstock		69			
Raw Materials, mg	Iron ore	200			
	Limestone	100	Water emissions, mg	Chemical oxygen demand	200
	Water	1,900,000		Biological oxygen demand	40
	Bauxite	300		Acid, as H+	60
	Sodium chloride	5.400		Metals	300
•	Clay	20 Chloride ions	Chloride ions	50	
	Ferromanganese	<1		Dissolved organics	20
				Suspended solids	200
Air emissions, mg	Dust	1,000		Oil	200
	Carbon monoxide	600		Phenol	1
	Carbon dioxide	530,000		Dissolved solids	500
	Sulfur oxides	4,000		Other nitrogen	10
	Nitrogen oxides	6,000	Solid waste, mg	•	
	Hydrogen sulfide	10		Industrial waste	1,400
	Hydrogen chloride	20		Mineral waste	8,000
	Hydrocarbons	7.000		Slags and ash	3,000
	Other organics	1		Nontoxic chemicals	400
	Metals	1		Toxic chemicals	1

Categories for which Indices are calculated:

Environmental Impact Index Categories for Process Flowsheet Evaluation.

Abiotic Indexes	Health-Related Indexes	Ecotoxicity Indexes
Global warming Stratospheric ozone depletion Acid deposition Smog formation	Inhalation toxicity Ingestion toxicity Inhalation carcinogenicity Ingestion carcinogenicity	Fish Aquatic Toxicity

Dimensionless Risk Index=
$$\frac{[EP*IIP]_i}{[EP*IIP]_{ref}}$$

Where

EP= Exposure PotentialIIP= Inherent Impact Potential

ENVIRONMENTAL IMPACT OF A CATEGORY

$$l=\sum_{i}$$
 Dimensionless Risk Index $_{i}\times m_{i}$

Kg/hr of chemical *i*

Global Warming Potential: Cumulative infrared energy capture for the release of 1 Kg of a greenhouse gas relative to that of CO_2

$$GWP_i = \frac{\int_0^n a_i C_i dt}{\int_0^n a_{CO_2} C_{CO_2} dt}$$

where

 a_i : radiative forcing of gas i (Wm^{-2}) (a function of conc.)

 C_i : Concentration (ppm)

n: number of years (ie. 120 years for CO2, etc)

$$I_{GW} = \sum_{i} (GWP_{i} \times m_{i})$$
 Kg/hr of chemical i

Ozone Depletion Potential: Predicted time and height integrated change in atmospheric ozone

$$ODP_i = \frac{\delta[O_3]_i}{\delta[O_3]_{CFC-11}}$$

where

 $\delta[O_3]$: predicted change (from tables)

$$I_{OD} = \sum_{i} (ODP_i \times m_i)$$
 Kg/hr of chemical i

Acid Rain Potential: Ability to generate Hydrogen ions in water...

$$ARP_i = \frac{\eta_i}{\eta_{SO_2}}$$

where

 η : moles of H^+ per mol of substance emmited

$$I_{AR} = \sum_{i} (ARP_i \times m_i)$$
 Kg/hr of chemical *i*

Smog Formation Potential: related to the change in moles of ozone formation due to the emission of one mol of a substance called incremental reactivity. Based on the following cycle

$$\begin{vmatrix}
NO_2 + h\upsilon \rightarrow O + NO \\
O + O_2 + M \rightarrow O_3 + M \\
O_3 + NO \rightarrow NO_2 + O_2
\end{vmatrix}$$

which regulates the ozone level, function of the photolysis rate and the ratio of N oxides.

VOC form radicals that convert NO to NO2 changing the ratio of oxides.

$$VOC + \bullet OH \rightarrow \bullet RO_2 + other$$

$$\bullet RO_2 + NO \rightarrow NO_2 + radicals$$

$$radicals \rightarrow \bullet OH + other$$

$$I_{SF} = \sum_{i} (SFP_i \times m_i)$$

$$SFP_i = \frac{MIR_i}{MIR_{ROG}}$$

$$I_{SF} = \sum_{i} (SFP_{i} \times m_{i})$$

TOXICITY

Non Carcinogenic Toxicity: Ingestion and inhalation (related to concentrations and referred to toluene)

<u>Carcinogenic Toxicity</u>: Ingestion and inhalation (related to concentrations and referred to benzene)

A similar method of indices and risk indices is used.